Existence of analytic invariant curves for a planar mapping near resonance 一類平面映射在共振點附近的解析不變曲線的存在性
In this paper the deformation invariant curve matching problem is addressed 圖像畸變下的形狀匹配和識別問題是計算機識別的根本問題之一。
The numerical simulations demonstrate that there is a quasi - periodic rotation on the invariant curve when the coupling coefficient e is small enough 數(shù)值計算表明當空間耦合強度足夠小且限制在某些范圍內(nèi)時,系統(tǒng)在不變?nèi)ι鲜菙M周期運動。
We use the poincare - andronov - hopf bifurcation theorem to prove that there is an invariant curve in the center manifold when the coupling coefficient e is small enough 利用poincar - andronov - hopf分支定理證明系統(tǒng)有弱空間耦合時在中心流形上存在不變?nèi)Α?
In the study of the lagrange stability of impact motion , we give some conditions of the bouncing solution of the asymptotically linear equation which is bounded or unbounded . outside of a large disc , using the symplectic transformation of the hamilton system to estimate the iteration of the successor map . applying the moser ' s small twist theorem , we get the invariant curves and then give the proof of the bouncing solutions which is bounded 在碰撞運動的lagrange穩(wěn)定性的討論中,給出了漸近線性方程碰撞解有界或無界的條件,在充分大的圓盤外,通過hamilton系統(tǒng)的辛坐標變換的角度平均來估計后繼映射的迭代,應用moser小扭轉定理得到不變曲線從而給出在一定條件下碰撞解有界的證明,碰撞解無界性的證明將采用直接估計后繼映射的方法給出。